
Employing GPU Accelerators for Efficient
Enforcement of Data Integrity in Outsourced Data

Krishna Prasanth R†∗, R. Mukkamala‡, P. K. Baruah†
†Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India.

{kprashanth29@gmail.com, pkbaruah@sssihl.edu.in}
‡Old Dominion University, Norfolk, Virginia, USA.

{mukka@cs.odu.edu}

Abstract—Cloud computing provides on-demand web-
based software, middleware, and computing resources.
It is a service-oriented model and one of its service is
Data as a Service (DaaS), also known as Outsourced
Database (ODB) model. Although DaaS solves the problem
of storing terabytes of data, the security of the data
is a major concern for all the users of the service. Of
the several security concerns, privacy and data integrity
are the focus of this paper. The privacy and integrity
enforcement module introduced in this paper resides on
users’ computing devices. It performs the desired integrity
checks to ensure that the data has not been tampered
with at the cloud provider. Here, we explore the benefit of
implementing the module on a multicore platform with
GPUs, thereby exploiting its inherent parallelism. The
speed up is observed to be from 1 to 12 depending on
the system architecture and the data size—larger is the
data size, higher is the speedup.

Index Terms—Cloud Computing, DaaS, data integrity,
parallelism, privacy, outsourcing, speedup

I. INTRODUCTION

Cloud computing provides various resources for the
users on demand using internet. The different set of
cloud architectures that currently exist are public clouds,
private clouds, and hybrid clouds. A given cloud may
provide one or more of the following services—software
(SaaS), data storage (DaaS), testing platforms (PaaS),
networks (NaaS), and infrastructure (IaaS). In this paper,
our focus is on clouds offering DaaS that enable data
owners to store their data remotely on a cloud server.
This model is ideal for small organization to maintain
their data without significant investment on stable storage
systems. However, since the data is outsourced onto
the cloud, these organizations are very much concerned
about ensuring security of the data. While data security
refers to several aspects such as data integrity, privacy,

∗Student author

authenticity, availability, and reliability, in this paper
our focus is on privacy and integrity. Data integrity
itself deals with three aspects—completeness, correct-
ness, and freshness. Completeness ensures whether or
not the cloud provider has sent all data relevant to a
particular request or query. Correctness ensures that the
data returned is what the data owner had stored and has
not been tampered with. Freshness guarantees that the
returned results are based on the latest copy of the data
reflecting all changes sent to the cloud server.

In this work, we concentrate on confidentiality and
tamper-resistant aspects of outsourced data. While en-
cryption is used for confidentiality, Secure Hash Al-
gorithm (SHA1) are used for tamper-resistant property.
Thus, if we consider a file or a database consisting of
records or tuples, a hash value using SHA is constructed
for each record by including all the fields of the record.
The hash value is appended to the record and then
encrypted using a symmetric key known to the data
owner. However, the guarantees provided by the scheme
come at the cost of additional processing time for each
record while sending data to the cloud provider (for
SHA1 and encryption) and while retrieving from the
cloud provider (for decryption and verifying the SHA1).

Here, we use multicore and GPU to speedup this
process. In particular, we experiment with parallelism
at the record level so each record can be handled inde-
pendently and in parallel. Depending on the size of the
data and the number of processors and the architecture,
we observe a speedup up as much as 12. We have also
implemented the same using CUDA. In almost all cases,
CUDA implementation on GPUs provided a higher
speedup than a limited multi-thread implementation on
multicore CPUs. Thus, it is clear that the extra processing
due to outsourcing is not going to adversely affect the
throughput of a system.

The paper is organized as follows. In section 2, we

provide a brief summary of the related work. Section
3 describes the underlying system model. Section 4
describes the proposed approach. In section 5, we present
the obtained experimental results. Finally, section 6
summarizes the observations and conclusions from this
work.

II. RELATED WORK

In this section, we look at some of the past research
related to the present work. In particular, we discuss past
work in the area of data integrity and encryption.

Challenge tokens have been a common tool used
by several researchers for verifying the integrity of
outsourced data. For example, Ateniese et al. compute
challenge tokens in the setup phase while uploading
a file and use same challenge tokens when verifying
the integrity of the returned results [1]. Sion used fake
queries as challenge tokens [2]. Here, when a batch of
queries are submitted to the cloud server, some fake
queries are inserted into the batch. The answers for
the queries were precomputed at the owner. Aggregated
Signatures using B+ trees has been another technique
in this direction [3]. Here, during the set up phase,
prior to offloading the data to the cloud provider, digital
signatures on the blocks are used to form a B+ tree. The
root of the tree is used in the verification phase. Merkle
hash trees are also employed for enforcing integrity in
static databases [4]. Here, the data owner computes the
Merkle hash tree and the root of the tree is known as
verification object. The verification object is distributed
to all the users. When the cloud service facilitator sends
the data, the users computes the root and verifies whether
the one obtained is same as verification object during the
verification phase.

Bloom filters are also used for providing fine grained
integrity [5]. Here, the fields in a record are mapped
using a set of hash functions and the hashes inserted
into a filter, a string of bits. The owner could store the
Bloom filters for the records and verify them when the
results are retrieved from the server. Of course, it is a
probabilistic data structure and hence might give rise to
false positives. To provide deterministic way of proving
the integrity, condensed-RSA is used [8]. It is computed
by the homomorphic property of the RSA digital sig-
nature. Single aggregated signature is computed using
multiplication of all the signatures of the tuples that are
part of the results which is computationally intensive.

In the context of frequent itemset data mining, fake
item insertion has been used to validate the integrity
of the returned results [9]. Here, knowing the expected

frequent itemsets for the fake items, the owner verifies
whether or not the results returned by the cloud provider
are correct.

In this paper, we employ encryption for symmetric
key encryption and Secure Hash Algorithm (SHA1) for
integrity.

III. SYSTEM MODEL

In this section, we describe the model used in the
paper. In general, data is stored in the form of files or
databases. While data is logically divided into blocks in a
file, it is divided into tuples in the case of database. In the
case of database, for example, other levels of granularity
are at table (or relation) level and attribute level.

In order for the model to be applicable at all levels, we
use a generic term data granule, and represent it as D. So
each data file (database) has a set of n data granules, say
{D1, D2, D3, ..., Dn}. Let D = {D1, D2, D3, ..., Dn},
be the Data space.

To enforce confidentiality, as mentioned before, we
use symmetric key encryption. Depending on the level
of confidence needed, we could use a single key, multiple
keys, or one key per granule. Let K be the KeySpace,
where K = {k1, k2, k3, ..., kn}. Once the data gran-
ules are encrypted using an encryption function (say
Encrypt), they result in cipher granules. We represent
the Cipher space as C. Similarly, the function Decrypt
decrypts the cipher granules back to plain data granules.

Similarly, for integrity, let H be the domain of the hash
value that are output of the SHA1 hash function (say
Hash) and let h represent a hash value for a granule. In
summary,

Hash : D −→ H
Encrypt : K ∗D −→ C
Decrypt : K ∗ C −→ D

IV. PROPOSED APPROACH

The paper is primarily geared towards improving the
throughput of the data owner while uploading data
to the cloud provider and while retrieving data from
there. During the uploading, it needs to encrypt the data
granules, and compute the hash value using SHA1 for
each granule. This is referred to as Storage phase. The
processing step during information retrieval is referred to
as Retrieval phase. We now describe these two phases.
• Storage phase: Here, each data granule is read from

the data file, its hash values, h computed. The hash
value is appended to the data granule. The data
granule is now encrypted. The encrypted Block C

is now written to file F ′ which is then outsourced
to cloud provider. This process is summarized in
Algorithm 1.

Algorithm 1 Storage Phase
Input: Generate k ∈ KeySpace
Input: File F which has to be outsourced.
Output: Encrypted File F ′

while NOT END OF FILE do
Read next granule D ← F
Compute h using D and Hash
Append h in D → (D,h)
Compute Encrypt(K, (D,h))→ C
Append C to Encrypted file F ′

end while

• Retrieval phase: During this phase, the owner has
downloaded the encrypted file F ′ from the cloud
provider. Here, each data granule is first decrypted
and the hash value is extracted. The hash value is
checked with the data part for integrity. Once it is
verified, the plain data granule is used to form file
F. Algorithm 2 summarizes these steps.

In the both the phases, the two operations of comput-
ing hash value and encrypting the block is performed
on set of Blocks, say {D1, D2, D3,, Dn}. Since these
two operations are performed on each block, they can be
parallelized using the support of underlying hardware.

Algorithm 2 Retrieval Phase
Input: Generate k ∈ KeySpace
Input: Encrpyted File F ′ which has been outsourced.
Output: File F

while NOT END OF FILE do
Read next cipher granule C ← F ′

Compute Decrypt(K,C)→ (D,h)
Extract h← (D, f)
Compute h′ using D and Hash
Append D to the File F
if h 6= h′ then

Integrity is lost.
Exit

else
Integrity is maintained.

end if
end while

In the above two phases, both hash function and
encryption (decryption) on each granule are performed

sequentially. These are computationally intensive oper-
ations. Here, we propose to improve the response time
of both the phases by employing parallel architectures
to parallelize the sequential steps. Here, we experiment
with multicore and GPU architectures.

A. Implementation of Application using multicore

The granules D1, D2, D3, ..., Dn are read from the file
F to a buffer. Using omp set num threads() function
number of threads that have to be created is identified.
Using the number of the threads that are created, the file
is partitioned into those many chunks and each chunk
is given to a single thread. Each chunk of data may
have several granules. The operations on each chunk are
performed in parallel, since each thread is assigned to a
single core. The thread performs the hash computations
and encryption (decryption) for the granules in the chunk
assigned.

B. Implementation of Application using CUDA

The granules D1, D2, D3, ..., Dn are read from the file
F to a buffer. The buffer is copied to the GPU device
using cudaMemcpy. The number of threads created is
equal to the number of granules that are present in the
file. Each granule is assigned to a thread. The CUDA
kernel performs the hash and encryption (decryption)
functions. Each thread block has fixed number of threads
as 1024. Number of thread blocks depends on the
number of blocks D in the file.

V. EXPERIMENTAL RESULTS

To measure the effectiveness of parallelism and paral-
lel architectures in improving the performance of tasks
involved in enforcing integrity and confidentiality for
outsourced data, we have run several experiments. Here,
we describe the experiments and the obtained results.

In order to measure the effect of the data size on
performance, we have chosen data of three different
sizes: 10 MB, 100 MB, and 1 GB. Speedup was chosen
as the measure of effectiveness. We have used C-based
code using OpenMP with multiple threads (1, 2, 4 and
16) on multicore systems. We have used CUDA code
on GPUs which have numerous cores resulting in poten-
tially millions of threads. Three different machines were
used to run the storage phase and the retrieval phase—
Gordon [10], Forge [11], and Local High Performance
Computing (LHPC) node.

First system, the Gordon, is a data-intensive super-
computer. It has a compute node with 16 cores using
Intel(R) Xeon(R) E5-2670 running at a clock rate of 2.60

GHz. Second system, the Forge (NCSA) supercomputer,
has a compute node with 16 AMD cores and 64 GB of
RAM. It is connected to six M2070 GPU units. Finally,
the third one, the LHPC, has Intel(R) Xeon(R) CPU
X5650 with a clock rate of 2.67 GHz. It has 6 cores
per socket. Since the system is dual socket, there are 12
cores with 24 GB of RAM. It is connected to 4 Tesla
S2050 GPU units. In summary, all three have multicore
CPUs. In addition, Forge and LHPC have GPU units.

We measure the effectiveness of these three architec-
tures on the three data sets during the storage phase
and the retrieval phase of the data. We first look at the
results from the runs on the Gordon system. We noted
the following:

• In the storage phase (Fig. 1), good speedup is
achieved with increase in the number of threads
across all data sizes. While the speedup was almost
the same in the case of 10 MB and 1 GB files, it
was relatively lower for 100 MB.

• Almost similar speedup is observed even in the data
retrieval phase (Fig. 2). Surprisingly, the speedup is
almost identical for all the three data sets.

Let us now look at the results from the Forge system.
We make the following observations:

• In the storage phase (Fig. 3), the speedup for Forge
is about 25% less than that of the Gordon system
for 1 to 8 threads. Surprisingly, even in the case of
CUDA with almost unlimited number of threads,
the speedup was lower than that of Gordon. This
clearly indicates that the sequential part of the stor-
age phase is a bottleneck in further improvements
to speedup.

• In the retrieval phase (Fig. 4), while the speedup
with threads 1 to 8 is almost identical to that on
Gordon, the CUDA implementation was better for
the 1 GB file. It was lower than that of on Gordon
for 10 MB and 100 MB. Surprisingly, the speedup
for the 100 MB was the worst of all three data sets.
This clearly indicates that the way the data is stored
and retrieved on Forge are playing a vital role in the
performance of this phase.

Our observations for the LHPC system are somewhat
different with respect to different data sizes (Fig. 5 and
Fig. 6). The speedup was the lowest for 10 MB files and
the maximum speedup that could be achieved at this size
was only 4. The speedup increased with the data size.
Maximum speedup with 1GB file was 10 for both storage
and retrieval phases. In general, the speedup on LHPC
was lower than that of the other two systems.

From these experiments, we conclude that: (i) A
maximum speedup of about 12 can be achieved during
storage and retrieval phases depending on the hardware
architecture. This is more likely achievable with GPUs,
especially for large data files. (ii) Typically, storage phase
has lower achievable speedup than the retrieval phase.
(iii) Besides the number of threads and CPU speeds,
data storage and management policies seem to play a
vital role in determining the achievable speedup. (iv)
Unless, the two phases are further optimized, the current
sequential portion of the two phases, which is typically at
the start and end of the phases, no further improvements
are possible in the speedups.

Fig. 1. Gordon Storage Phase

Fig. 2. Gordon Retrieval Phase

VI. CONCLUSION AND FUTURE WORK

It is important to provide data integrity and privacy
for the data that has to be outsourced. In this paper,
we have considered symmetric key encryption for data
confidentiality and SHA1 hash algorithm for the tamper-
resistance. In order to remove the performance bottle-
necks in executing the additional steps at the time of
storage and retrieval of data, we have implemented them

Fig. 3. Forge Storage Phase

Fig. 4. Forge Retrieval Phase

on three different systems—Gordon, Forge, and Telsa.
While they all resulted in a speedup, the maximum that
could be achieved was only 12, even with GPUs. The
future work should look at optimizing the initial and
final steps of each of the storage and retrieval phases so
better speedups can be obtained. For large data sets the
speedup can be increased further using Multiple GPUs.

Fig. 5. LHPC Storage Phase

Fig. 6. LHPC Retrieval Phase

ACKNOWLEDGEMENT

We dedicate this work to the founder Chancellor of
SSSIHL, Bhagawan Sri Sathya Sai Baba. This work
was partially supported by NVIDIA, Pune grant under
Professor partnership program and the Extreme Science
and Engineering Discovery Environment (XSEDE).

REFERENCES

[1] G. Ateniese, R. Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and Efficient Provable Data Possession”, SecureComm 2008,
September 22 - 25, 2008, Istanbul, Turkey.

[2] R. Sion, ”Query Execution Assurance for Outsourced
Databases”, Proc. Very Large Databases Conf., VLDB 2005.

[3] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic
Authenticated Index Structures for Outsourced Databases”, SIG-
MOD 2006, June 2729, 2006, Chicago, Illinois, USA.

[4] M. Gertz, A. Kwong, C. U. Martel, G. Nuckolls, P. T. Devanbu,
and S. S. Stubblebine, “Databases that tell the Truth: Authentic
Data Publication”, IEEE Data Engineering Bulletin, Volume 27,
Number 1, March 2004.

[5] M. Zhang, K. Cai, and D. Feng, “Fine-Grained Cloud DB Dam-
age Examination Based on Bloom Filters”, Proceeding WAIM’10
Proceedings of the 11th international conference on Web-age
information management, pp. 157-168, Springer-Verlag Berlin,
Heidelberg, 2010.

[6] J. Heurix and T. Neubauer, “On the Security of Outsourced and
Untrusted Databases”, 9th IEEE/ACIS International Conference
on Computer and Information Sciences, 2010.

[7] A. Opera, M. K. Reiter, and K. Yang, “Space-Efficient Block
Storage Integrity”, Proc. NDSS’05, 12th Annual Network and
Distributed System Security Symposium, San Diego, California,
3-4 February 2005.

[8] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication
and Integrity in Outsourced Databases”, ACM Transactions on
Storage, Volume 2 Issue 2, May 2006, pp. 107 - 138, ACM New
York, NY, USA.

[9] W.K. Wong, D. W. Cheung, E. Hung, B. Kao, and N. Mamoulis,
“An Audit Environment for Outsourcing of Frequent Itemset
Mining”, Proc. VLDB Endowment,Volume 2 Issue 1, August
2009, pp. 1162-1173

[10] https://www.xsede.org/sdsc-gordon.
[11] https://www.xsede.org/ncsa-forge.

